Respuesta :
(15h^2+10h+25)/(5h)
(15h^2+10h+25)/(5)
(3h^2+2h+5)/(h)
(15h^2+10h+25)/(5h)
(5h)(3h)=15h^2
(10h+25)/(5h)
(5h)(2)=10h
(25)/(5h)=5/h=\=
(15h^2+10h+25)/(5h)= 3h+2, with a remainder of 25
(15h^2+10h+25)/(5)
(3h^2+2h+5)/(h)
(15h^2+10h+25)/(5h)
(5h)(3h)=15h^2
(10h+25)/(5h)
(5h)(2)=10h
(25)/(5h)=5/h=\=
(15h^2+10h+25)/(5h)= 3h+2, with a remainder of 25
Answer:
x =3h and y =2
Step-by-step explanation:
[tex]\frac{15h^2+10h+25}{5h} \\\frac{15h^2}{5h} +\frac{15h^2}{5h}+\frac{25}{5h} \\[/tex]
on simplifying first and second term we get
[tex]\frac{15h^2}{5h} =3h[/tex]
[tex]\frac{10h}{5h} =2[/tex]
leaving the third term as it is asking first terms after simplification
therefore x+y =3h +2+
so x = 3h and y = 2