Respuesta :

We will use the formula a^2-b^2=(a-b)(a+b) to get the fractions to the same dominator.

3/[(x-3)(x+3)]+5/(x+3) =
3/[(x-3)(x+3)]+5(x-3)/(x+3)[(x-3)(x+3)] = 
(3+5x-15)/[(x-3)(x+3)] = 
(5x-12)/[(x-3)(x+3)]

The final answer is D.

Answer:

Sum  [tex]\Rightarrow \dfrac{5x-12}{(x+3)(x-3)}[/tex]

D is correct

Step-by-step explanation:

Given: [tex]\dfrac{3}{x^2-9}+\dfrac{5}{x+3}[/tex]

We are given a rational expression and to add the expression.

First we make common denominator and then we add them

Multiply and divide the second fraction  by x-3

[tex]\Rightarrow \dfrac{3}{x^2-9}+\dfrac{5(x-3)}{(x-3)(x+3)}[/tex]

[tex]\Rightarrow \dfrac{3}{x^2-9}+\dfrac{5x-15}{x^2-9}[/tex]

Now we have common denominator and write as common

[tex]\Rightarrow \dfrac{3+5x-15}{x^2-9}[/tex]

[tex]\Rightarrow \dfrac{5x-12}{x^2-9}[/tex]

Factor the denominator: [tex]a^2-b^2=(a-b)(a+b)[/tex]

[tex]\Rightarrow \dfrac{5x-12}{(x+3)(x-3)}[/tex]

Hence, The sum  is  [tex]\Rightarrow \dfrac{5x-12}{(x+3)(x-3)}[/tex]