Totaled
contestada

Which expression is equivalent to the following complex fraction?
(1-1/x)/2
A) x-1/2x
B) -1/2
C) 2x-2/x
D) 2x/x-1

Respuesta :

Answer: The correct option is A.

Explanation:

The given expression,

[tex]\frac{1-\frac{1}{x}} {2}[/tex]

First we have to simplify the numerator terms.

[tex]\frac{1-\frac{1}{x}} {2}=(1-\frac{1}{x})\times\frac{1}{2}[/tex]

Take x as LCD in numerator.

[tex]\frac{1-\frac{1}{x}} {2}=(\frac{x-1}{x})\times\frac{1}{2}[/tex]

It can be written as,

[tex]\frac{1-\frac{1}{x}} {2}=\frac{x-1}{2x}[/tex]

Therefore the given complex fraction can be expressed as [tex]\frac{x-1}{2x}[/tex]

This expression is same as the expression written in option A. So, the option A is correct.

Answer:

A) [tex](\frac{x - 1}{2x})[/tex] is equivalent fraction.

Step-by-step explanation:

Given : [tex]\frac{1-\frac{1}{x}}{2}[/tex].

To find : Which expression is equivalent to the following complex fraction.

Solution : We have given that [tex]\frac{1-\frac{1}{x}}{2}[/tex].

Rewrite the equation  [tex]\frac{1-\frac{1}{x}}{2}[/tex]= [tex](1 - \frac{1}{x} )*\frac{1}{2}[/tex].

Taking x as LCD in numerator

[tex]\frac{1-\frac{1}{x}}{2}[/tex] = [tex](\frac{x - 1}{x})*\frac{1}{2}[/tex]

On multiplying denominator x and 2

[tex]\frac{1-\frac{1}{x}}{2}[/tex] = [tex](\frac{x - 1}{2x})[/tex].

Therefore, A) [tex](\frac{x - 1}{2x})[/tex] is equivalent fraction.