Respuesta :
Answer: The correct option is A.
Explanation:
The given expression,
[tex]\frac{1-\frac{1}{x}} {2}[/tex]
First we have to simplify the numerator terms.
[tex]\frac{1-\frac{1}{x}} {2}=(1-\frac{1}{x})\times\frac{1}{2}[/tex]
Take x as LCD in numerator.
[tex]\frac{1-\frac{1}{x}} {2}=(\frac{x-1}{x})\times\frac{1}{2}[/tex]
It can be written as,
[tex]\frac{1-\frac{1}{x}} {2}=\frac{x-1}{2x}[/tex]
Therefore the given complex fraction can be expressed as [tex]\frac{x-1}{2x}[/tex]
This expression is same as the expression written in option A. So, the option A is correct.
Answer:
A) [tex](\frac{x - 1}{2x})[/tex] is equivalent fraction.
Step-by-step explanation:
Given : [tex]\frac{1-\frac{1}{x}}{2}[/tex].
To find : Which expression is equivalent to the following complex fraction.
Solution : We have given that [tex]\frac{1-\frac{1}{x}}{2}[/tex].
Rewrite the equation [tex]\frac{1-\frac{1}{x}}{2}[/tex]= [tex](1 - \frac{1}{x} )*\frac{1}{2}[/tex].
Taking x as LCD in numerator
[tex]\frac{1-\frac{1}{x}}{2}[/tex] = [tex](\frac{x - 1}{x})*\frac{1}{2}[/tex]
On multiplying denominator x and 2
[tex]\frac{1-\frac{1}{x}}{2}[/tex] = [tex](\frac{x - 1}{2x})[/tex].
Therefore, A) [tex](\frac{x - 1}{2x})[/tex] is equivalent fraction.