Respuesta :

Find s8 for the following geometric sequence: 3, –6, 12, –24. = –255


Answer:

 [tex]S_{8}[/tex] = [tex]-255)[/tex].

Step-by-step explanation:

Given  :  geometric sequence: 3, –6, 12, –24.

To find : Find s8 for the following geometric .

Solution : We have given geometric sequence: 3, –6, 12, –24.

Where, first term = 3, common ration : [tex]\frac{-6}{3}[/tex] = -2.

Formula used  :  [tex]a(\frac{1-r^{n}}{1-r} )[/tex]

Where, a = first term , r = common ratio.

[tex]S_{8}[/tex] = [tex]3(\frac{1-(-2)^{8}}{1-(-2)} )[/tex].

[tex]S_{8}[/tex] = [tex]3(\frac{1- 256}{1+2} )[/tex].

[tex]S_{8}[/tex] = [tex]3(\frac{-255}{3} )[/tex].

[tex]S_{8}[/tex] = [tex]3 * (85)[/tex].

[tex]S_{8}[/tex] = [tex]-255)[/tex].

Therefore, [tex]S_{8}[/tex] = [tex]-255)[/tex].