I NEED HELP RNNNNNNNNNN!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

What is the simplified form of the square root of 64x16 ?

8x4
8x8
32x4
32x8

Respuesta :

Answer:

Option B. [tex]8x^{8}[/tex]

Step-by-step explanation:

The given expression is [tex]\sqrt{64x^{16}} =\sqrt{8^{2}.x^{8}.x^{8}}=\sqrt{8^{2}}.\sqrt{x^{8}}.\sqrt{x^{8}}=8x^{4}.x^{4}=8x^{4+4}=8x^{8}[/tex]

Therefore the simplified form of the expression will be [tex]8x^{8}[/tex]

Answer:

Option B is correct

[tex]8x^8[/tex]

Step-by-step explanation:

Using the exponent rules:

[tex]\sqrt[n]{a^n} = a[/tex]

[tex]\sqrt[n]{a^m} = a^{\frac{m}{n}}[/tex]

Given the expression:

[tex]64x^{16}[/tex]

We have to find the simplified form of the square root  of the given expression.

Square root  of [1] is:

[tex]\sqrt{64x^{16}}[/tex]

We can write 64 as:

[tex]64 = 8 \cdot 8 = 8^2[/tex]

then;

[tex]\sqrt{8^2 \cdot x^{16}}[/tex]

Apply the exponent rules:

[tex]8 \cdot x^{\frac{16}{2}} = 8 \cdot x^8[/tex]

⇒[tex]8x^8[/tex]

Therefore, the simplified form of the square root of [tex]64x^{16}[/tex] is, [tex]8x^8[/tex]