Respuesta :
Answer:
Option B. [tex]8x^{8}[/tex]
Step-by-step explanation:
The given expression is [tex]\sqrt{64x^{16}} =\sqrt{8^{2}.x^{8}.x^{8}}=\sqrt{8^{2}}.\sqrt{x^{8}}.\sqrt{x^{8}}=8x^{4}.x^{4}=8x^{4+4}=8x^{8}[/tex]
Therefore the simplified form of the expression will be [tex]8x^{8}[/tex]
Answer:
Option B is correct
[tex]8x^8[/tex]
Step-by-step explanation:
Using the exponent rules:
[tex]\sqrt[n]{a^n} = a[/tex]
[tex]\sqrt[n]{a^m} = a^{\frac{m}{n}}[/tex]
Given the expression:
[tex]64x^{16}[/tex]
We have to find the simplified form of the square root of the given expression.
Square root of [1] is:
[tex]\sqrt{64x^{16}}[/tex]
We can write 64 as:
[tex]64 = 8 \cdot 8 = 8^2[/tex]
then;
[tex]\sqrt{8^2 \cdot x^{16}}[/tex]
Apply the exponent rules:
[tex]8 \cdot x^{\frac{16}{2}} = 8 \cdot x^8[/tex]
⇒[tex]8x^8[/tex]
Therefore, the simplified form of the square root of [tex]64x^{16}[/tex] is, [tex]8x^8[/tex]