Respuesta :

Abira
here is your solution.. hope it helps
Ver imagen Abira

Answer:

The measures of the triangle are

[tex]A=32\°,B=23\°,C=125\°[/tex]

[tex]a=19\ units, b=14\ units, c=29.4\ units[/tex]

Step-by-step explanation:

Step 1

Find the value of angle B

Applying the law of sines

[tex]\frac{a}{sin(A)} =\frac{b}{sin(B)}[/tex]

we have

[tex]a=19\ units, b=14\ units, A=32\°[/tex]

Substitute and solve for B

[tex]\frac{19}{sin(32\°)} =\frac{14}{sin(B)}[/tex]

[tex]\frac{19}{sin(32\°)} =\frac{14}{sin(B)}\\ \\sin(B)=(14/19)*sin(32\°)[/tex]

[tex]B=arcsin((14/19)*sin(32\°))=23\°[/tex]

Step 2

Find the measure of angle C

we know that

The sum of the interior angles of triangle is equal to [tex]180\°[/tex]

so

[tex]A+B+C=180\°[/tex]

we have

[tex]A=32\°[/tex]

[tex]B=23\°[/tex]

Substitute and solve for C

[tex]32\°+23\°+C=180\°[/tex]

[tex]C=180\°-55\°=125\°[/tex]

Step 3

Find the length of the side c

Applying the law of cosines

[tex]c^{2} =a^{2}+b^{2}-2abcos(C)[/tex]

we have

[tex]a=19\ units, b=14\ units, C=125\°[/tex]

substitute

[tex]c^{2} =19^{2}+14^{2}-2(19)(14)cos(125\°)[/tex]

[tex]c^{2} =557-532cos(125\°)[/tex]

[tex]c =29.4\ units[/tex]

The measures of the triangle are

[tex]A=32\°,B=23\°,C=125\°[/tex]

[tex]a=19\ units, b=14\ units, c=29.4\ units[/tex]