Respuesta :
[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array} \\\\
-----------------------------\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \cfrac{\textit{earth's volume}}{\textit{pluto's volume}}\qquad \cfrac{s^3}{s^3}\implies \cfrac{6371^3}{1161^3}\implies \cfrac{258596602811}{1564936281}\approx 165.24417[/tex]
[tex]\bf \cfrac{\textit{earth's volume}}{\textit{pluto's volume}}\qquad \cfrac{s^3}{s^3}\implies \cfrac{6371^3}{1161^3}\implies \cfrac{258596602811}{1564936281}\approx 165.24417[/tex]
Answer:
165
Step-by-step explanation:
I just took a test on Plato/Edmentum with this question and this was the right answer
~Please mark me as brainliest :)