Respuesta :

Answer:

The length of AC would be 168.

Step-by-step explanation:

A midpoint of the line segment is the point that is halfway between the endpoints of the line segment.

Since B is the midpoint of AC, we have AB=BC

here, [tex]AB=5\cdot x+9[/tex] and [tex]BC=8\cdot x-36[/tex]

AC=AB+BC

AC=BC+BC

[tex]AC=2\cdot BC[/tex]

[tex]AC=2(8x-36)=16x-72[/tex]         ....(1)

to find the length of AC we have to find the value of x from the given condition i.e, AB=BC

[tex]5x+9=8x-36[/tex]

Combine like terms:

[tex]9+36=8x-5x[/tex]

[tex]45=3x[/tex]

∴[tex]x=15[/tex]

Now, putting the value of x in (1) we get,

AC[tex]=16x-72[/tex]

[tex]AC=16\cdot 15 -72[/tex]=[tex]240-72[/tex]=168

Therefore, the length of AC is 168.