Respuesta :

[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\ S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ ----------\\ a_1=-2\\ r=5\\ n=6 \end{cases} \\\\\\ S_6=-2\left( \cfrac{1-5^6}{1-5} \right)[/tex]

The answer is D. −7,812