The endpoints of ab are a(1,4) and b(6,-1). If point c divides ab in the ratio 2:3, the coordinates of c are ?. If point d divides ac in the ratio 3:2, the coordinates of d are ?.

Respuesta :

Answer

If point C divides line AB in the ratio 2:3 the coordinates of C are (3,2)

If point D divides line AC in the ratio 3:2, the coordinates of point D are (2.2,2.8)

Step-by-step explanation:

The coordinates of points C are (4,1).

The coordinates of point D are (3, 2).

Given

The endpoints of AB are A(1,4) and B(6,-1).

What is the formula to find the coordinates?

The formula is used to find the coordinates is;

[tex]\rm x = \dfrac{mx_1+nx_2}{m+n}\\\\y = \dfrac{my_1+my_2}{m+n}[/tex]

If point C divides AB in the ratio 2:3, the coordinates of C are;

[tex]\rm x _c= \dfrac{2(1)+3(6)}{2+3}\\\\\\ x_c= \dfrac{2+18}{5} \\\\ x_c=\dfrac{20}{5}\\\\\rm x_c=4\\\\y_c = \dfrac{2(4)+3(-1)}{2+3}\\\\y_c = \dfrac{8-3}{5}\\\\y_c=\dfrac{5}{5}\\\\y_c=1[/tex]

The coordinates of points C are (4,1).

If point D divides AC in the ratio 3:2, the coordinates of D are;

[tex]\rm x _c= \dfrac{3(1)+2(6)}{3+2}\\\\\\ x_c= \dfrac{3+12}{5} \\\\ x_c=\dfrac{15}{5}\\\\\rm x_c=3\\\\y_c = \dfrac{3(4)+2(-1)}{3+2}\\\\y_c = \dfrac{12-2}{5}\\\\y_c=\dfrac{10}{5}\\\\y_c=2[/tex]

The coordinates of point D are (3, 2).

To know more about Coordinates click the link given below.

https://brainly.com/question/24741905