Respuesta :
[tex]V = \frac{4}{3}\pi r^3
\\ 5000\pi = \frac{4}{3} \pi r^3
\\ 5000 = \frac{4}{3} r^3
\\ \frac{3}{4} * 5000 = r^3
\\ 3750 = r^3
\\ r = 15.536
\\ SA = 4 \pi r^2
\\ SA = 4\pi (15.536)^2
\\ SA = 3033.11[/tex]
The surface area of the sphere given that it's volume is 5000π m³ is 966π m²
How to determine the radius
- Volume (V) = 5000π m³
- Radius (r) =?
V = 4/3πr³
5000π = 4/3 × π × r³
Cancel out π
5000 = 4r³ / 3
Cross multiply
4r³ = 5000 × 3
4r³ = 15000
Divide both sides by 4
r³ = 15000 / 4
r³ = 3750
Take the cube root of both sides
r = ³√3750
r = 15.54 m
How to determine the surface area
- Radius (r) = 15.54 m
- Surface area (SA) =?
SA = 4πr²
SA = 4 × π × (15.54)²
SA = 966π m²
Learn more about volume of spheres:
https://brainly.com/question/23827365
#SPJ2