Respuesta :

[tex]V = \frac{4}{3}\pi r^3 \\ 5000\pi = \frac{4}{3} \pi r^3 \\ 5000 = \frac{4}{3} r^3 \\ \frac{3}{4} * 5000 = r^3 \\ 3750 = r^3 \\ r = 15.536 \\ SA = 4 \pi r^2 \\ SA = 4\pi (15.536)^2 \\ SA = 3033.11[/tex]

The surface area of the sphere given that it's volume is 5000π m³ is 966π m²

How to determine the radius

  • Volume (V) = 5000π m³
  • Radius (r) =?

V = 4/3πr³

5000π = 4/3 × π × r³

Cancel out π

5000 = 4r³ / 3

Cross multiply

4r³ = 5000 × 3

4r³ = 15000

Divide both sides by 4

r³ = 15000 / 4

r³ = 3750

Take the cube root of both sides

r = ³√3750

r = 15.54 m

How to determine the surface area

  • Radius (r) = 15.54 m
  • Surface area (SA) =?

SA = 4πr²

SA = 4 × π × (15.54)²

SA = 966π

Learn more about volume of spheres:

https://brainly.com/question/23827365

#SPJ2