Respuesta :

Any quadratic equation always comes in the form
[tex]a x^{2} +bx+c=0[/tex]

where a, b, and c are constant.

few examples;
[tex] x^{2} +3x+4=0[/tex]
where [tex]a=1[/tex], [tex]b=3[/tex], and [tex]c=4[/tex]

[tex]-4 x^{2} -9x+5=0[/tex]
where [tex]a=-4[/tex], [tex]b=-9[/tex], and [tex]c=5[/tex]

[tex]35 x^{2} -56x=198[/tex]
At first, this equation doesn't look like a quadratic equation but with a little rearranging, it will.
[tex] 35x^{2}-56x-198=0 [/tex]

[tex](x-5)(x+7)[/tex]
This form also needs to be manipulated to get the quadratic form; by multiplying out we have [tex] x^{2} +2x-35[/tex]
A quadratic function is a polynomial of degree 2.
Therefore if a function is a quadratic function, it should have the term [tex] x^{2} [/tex] in its expression.

A quadratic function has the form
[tex]f(x) = a x^{2} + bx + c[/tex]
where [tex]a, b[/tex], and [tex]c[/tex] are constants.

Although [tex]b[/tex] and/or [tex]c[/tex] can be zero, [tex]a[/tex] should not be zero.