The length of a rectangle is 5 inches more than its width, x. The area of a rectangle can be represented by the equation x 2 + 5x = 300. What are the measures of the width and the length? Width = a0 inches Length = a1 inches NEXT QUESTION

Respuesta :

mergl
area=length*width
length=5+width
area=(5+w)(w)
area=5w+w^2
area=x^2+5x=300
x^2+5x-300=0
(x+20)(x-15)=0
x=15
w=15
l=5+15
l=20

Answer:

[tex]Width=15\ in[/tex]

[tex]Length=20\ in[/tex]

Step-by-step explanation:

Let

x-----> the width of the rectangle

y----> the length of the rectangle

we know that

the area of the rectangle is equal to

[tex]A=xy[/tex] -----> equation A

[tex]y=x+5[/tex] ----> equation B

substitute equation B in equation A

[tex]A=x(x+5)[/tex]

[tex]A=x^{2}+5x[/tex]

[tex]x^{2} +5x=300[/tex] ------> given problem

so

the area of the rectangle is equal to

[tex]A=300\ in^{2}[/tex]

Solve the quadratic equation

[tex]x^{2} +5x-300=0[/tex]

we know that

The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to

[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^{2} +5x-300=0[/tex]

so

[tex]a=1\\b=5\\c=-300[/tex]

substitute in the formula

[tex]x=\frac{-5(+/-)\sqrt{5^{2}-4(1)(-300)}} {2(1)}[/tex]

[tex]x=\frac{-5(+/-)\sqrt{1225}} {2}[/tex]

[tex]x=\frac{-5(+/-)35} {2}[/tex]

[tex]x=\frac{-5+35} {2}=15[/tex]

[tex]x=\frac{-5-35} {2}=-20[/tex]

the solution is

[tex]x=15\ in[/tex]

Find the value of y

[tex]y=x+5[/tex]

[tex]y=15+5=20\ in[/tex]