Respuesta :
(f of g)(x)=f(g(x))=f(x-3)=e^(x-3)
The domain of a real exponential function is all real, and
the corresponding range is y>0, i.e. (0,+∞)
The domain of a real exponential function is all real, and
the corresponding range is y>0, i.e. (0,+∞)
Answer:
D. domain: all real numbers range: y>0
Step-by-step explanation:
The composite function of f(x) and g(x) is:
y = f(g(x))
In this problem, we have that:
[tex]f(x) = e^{x}[/tex]
[tex]g(x) = x - 3[/tex]
So
[tex]f(g(x)) = f(x - 3) = e^{x - 3}[/tex]
The domain of an exponential function is all real numbers, and the range are positive values.
So the correct answer is:
D. domain: all real numbers range: y>0