Respuesta :
Refrection of a function across the y-axis, changes the sign of x in the function.
Thus, given the function:
[tex]f(x)=(8)^x[/tex]
Refrection of the function across the y-axis will result in the function:
[tex]g(x)=(8)^{-x}[/tex]
Refrecting a function across the x-axis, changes the sign of the function.
Thus, refrecting the function:
[tex]g(x)=(8)^{-x}[/tex]
across the x-axis will result in the function:
[tex]h(x)=-(8)^{-x}[/tex]
The graph of [tex]f(x)=(8)^x[/tex] and [tex]h(x)=-(8)^{-x}[/tex] is attached.
The green curve represents the graph of the function [tex]f(x)=(8)^x[/tex], while the orange curve represents the graph of the function [tex]h(x)=-(8)^{-x}[/tex].
Thus, given the function:
[tex]f(x)=(8)^x[/tex]
Refrection of the function across the y-axis will result in the function:
[tex]g(x)=(8)^{-x}[/tex]
Refrecting a function across the x-axis, changes the sign of the function.
Thus, refrecting the function:
[tex]g(x)=(8)^{-x}[/tex]
across the x-axis will result in the function:
[tex]h(x)=-(8)^{-x}[/tex]
The graph of [tex]f(x)=(8)^x[/tex] and [tex]h(x)=-(8)^{-x}[/tex] is attached.
The green curve represents the graph of the function [tex]f(x)=(8)^x[/tex], while the orange curve represents the graph of the function [tex]h(x)=-(8)^{-x}[/tex].

Answer:
The answer is D. A is f(x) =1/4 (8)x
Step-by-step explanation: