Respuesta :

a)

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 4}}\quad ,&{{ 6}})\quad % (c,d) B&({{ 28}}\quad ,&{{ 11}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{11-6}{28-4}\implies \cfrac{5}{24}[/tex]

[tex]\bf y-{{ y_1}}={{ m}}(x-{{ x_1}})\implies y-6=\cfrac{5}{24}(x-4)\\ \left. \qquad \right. \uparrow\\ \textit{point-slope form} \\\\\\ y-6=\cfrac{5}{24}x-\cfrac{5}{6}\implies y=\cfrac{5}{24}x-\cfrac{5}{6}+6 \\\\\\ y=\cfrac{5}{24}x+\cfrac{31}{6}[/tex]

b)

[tex]\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ 4}}\quad ,&{{ 6}})\quad % (c,d) B&({{ 28}}\quad ,&{{ 11}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ AB=\sqrt{(28-4)^2+(11-6)^2}\implies AB=\sqrt{24^2+5^2}\implies AB=\sqrt{601}[/tex]

c)

well, the speed of the ship, the ship took two hours to cover the distance AB, thus the speed is length/time

[tex]\bf \cfrac{AB\ kms}{2hours}\implies \cfrac{\sqrt{601}\ kms}{2\ hrs}\approx 12.25765\ \frac{kms}{hrs}[/tex]