Respuesta :
(40v^2)/(35v^4) / (20v^3)/(5v)
(8)/(7v^2) / (4v^2/1)
(8)/(7v^2) * (1 / 4v^2)
2/(7v^4)
(8)/(7v^2) / (4v^2/1)
(8)/(7v^2) * (1 / 4v^2)
2/(7v^4)
Given expression: [tex]\frac{\left(40v^2\right)}{\left(35v^4\right)}[/tex]÷\frac{\left(20v^3\right)}{\left(5v\right)}.
Changing division sign into multiplication and flipping the second fraction, we get
[tex]\frac{\left(40v^2\right)}{\left(35v^4\right)}\times \frac{\left(5v\right)}{\left(20v^3\right)}[/tex]
[tex]\mathrm{Cancel\:the\:common\:factor:}\:5[/tex]
[tex]=\frac{8}{7v^2}\times \frac{5v}{20v^3}[/tex]
[tex]\mathrm{Cancel\:the\:common\:factor\:again}\:5[/tex]
[tex]=\frac{8}{7v^2}\times \frac{1}{4v^2}[/tex]
[tex]=\frac{8}{7\times \:4v^2v^2}[/tex]
[tex]=\frac{8}{28v^4}[/tex]
[tex]\mathrm{Cancel\:the\:common\:factor:}\:4[/tex]
[tex]=\frac{2}{7v^4}[/tex]