Simplify completely 40 v squared over 35 v to the fourth power divided by 20 v cubed over 5 v. 2 over 7 v to the fourth power 7 over 32 7 v to the fourth power over 2 32 over 7

Respuesta :

bcalle
(40v^2)/(35v^4) / (20v^3)/(5v)
(8)/(7v^2) / (4v^2/1)
(8)/(7v^2) * (1 / 4v^2)
2/(7v^4)

Given expression: [tex]\frac{\left(40v^2\right)}{\left(35v^4\right)}[/tex]÷\frac{\left(20v^3\right)}{\left(5v\right)}.

Changing division sign into multiplication and flipping the second fraction, we get

[tex]\frac{\left(40v^2\right)}{\left(35v^4\right)}\times \frac{\left(5v\right)}{\left(20v^3\right)}[/tex]

[tex]\mathrm{Cancel\:the\:common\:factor:}\:5[/tex]

[tex]=\frac{8}{7v^2}\times \frac{5v}{20v^3}[/tex]

[tex]\mathrm{Cancel\:the\:common\:factor\:again}\:5[/tex]

[tex]=\frac{8}{7v^2}\times \frac{1}{4v^2}[/tex]

[tex]=\frac{8}{7\times \:4v^2v^2}[/tex]

[tex]=\frac{8}{28v^4}[/tex]

[tex]\mathrm{Cancel\:the\:common\:factor:}\:4[/tex]

[tex]=\frac{2}{7v^4}[/tex]

Therefore , correct option is [tex]\frac{2}{7v^4}.[/tex]