Given a set of points representing a function, the inverse is the interchange of the set of points. i.e. given point (a, b), the inverse is point (b, a).
Thus, given
[tex]h = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}[/tex],
the inverse is
[tex]h^{-1} = \{(1,\1), (2,\2), (3,\3), (4,\4), (5,\5), (6,\6)\}[/tex]
Given
[tex]g = \{(1,3), (2,6), (3,9), (4,12), (5,15), (6,18)\}[/tex]
the inverse is
[tex]g^{-1} = \{(3,1), (6,2), (9,3), (12,4), (15,5), (18,6)\}[/tex]
Given
[tex]f = \{(1,2), (2,3), (3,4), (4,5), (5,6), (6,7)\}[/tex]
the inverse is
[tex]f^{-1} = \{(2,1), (3,2), (4,3), (5,4), (6,5), (7,6)\}[/tex]
Given
[tex]i = \{(1,1), (2,3), (3,5), (4,7), (5,9), (6,11)\}[/tex]
the inverse is
[tex]i^{-1} = \{(1,1), (3,2), (5,3), (7,4), (9,5), (11,6)\}[/tex]