Respuesta :
First of all, find f ⁻¹ (x), or the inverse function like so:
y = log(3x + 12)
e^y = 3x + 12
3x = e^y - 12
x = 1/3 (e^y - 12)
Now, swap x and y:
f ⁻¹ (x) = y = 1/3 (e^x - 12)
Secondly and finally, substitute 3 into this eq'n:
f ⁻¹ (3) = 1/3 (e³ -12) = 2.695.....
so 2.695 (to 4 sig.figs/ 3 d.ps)
or if asked for an exact answer then it is just: 1/3 (e³ -12), which can be simplfied to 1/3e³ - 4.
y = log(3x + 12)
e^y = 3x + 12
3x = e^y - 12
x = 1/3 (e^y - 12)
Now, swap x and y:
f ⁻¹ (x) = y = 1/3 (e^x - 12)
Secondly and finally, substitute 3 into this eq'n:
f ⁻¹ (3) = 1/3 (e³ -12) = 2.695.....
so 2.695 (to 4 sig.figs/ 3 d.ps)
or if asked for an exact answer then it is just: 1/3 (e³ -12), which can be simplfied to 1/3e³ - 4.
Answer:
23
Step-by-step explanation:
Given : [tex]f(x) = log_3(x + 4)[/tex]
To Find: [tex]f^{-1}(3)[/tex]
Solution:
[tex]y = log_3(x + 4)[/tex]
Replace y with x and x with y
[tex]x = log_3(y + 4)[/tex]
[tex]3^x = y + 4[/tex]
[tex]3^x-4 = y [/tex]
So, [tex]f^{-1}(x)=3^x-4[/tex]
Now substitute x= 3
[tex]f^{-1}(3)=3^(3)-4 [/tex]
[tex]f^{-1}(3)=27-4 [/tex]
[tex]f^{-1}(3)=23[/tex]
Hence the value of [tex]f^{-1}(3)[/tex] is 23