The coordinates of P are: [tex]P\left(\frac{5}{3},-\frac{1}{3}\right)[/tex].
- Initially, we consider the coordinates of P as P(x,y).
- The other points are: Q(-5,3) and R(4,-1).
- Point P is 5/6 of the length of line segment of R to Q, thus:
[tex]P - Q = \frac{5}{6}(R - Q)[/tex]
This is used to find both the x-coordinate and the y-coordinate of P, replacing the x and y-coordinates of Q and R.
Find x:
[tex]P - Q = \frac{5}{6}(R - Q)[/tex]
[tex]x - (-5) = \frac{5}{6}(4 - (-4))[/tex]
[tex]x + 5 = \frac{40}{6}[/tex]
[tex]x = \frac{40}{6} - \frac{30}{6}[/tex]
[tex]x = \frac{10}{6}[/tex]
[tex]x = \frac{5}{3}[/tex]
Find y:
[tex]P - Q = \frac{5}{6}(R - Q)[/tex]
[tex]y - 3 = \frac{5}{6}(-1 - 3)[/tex]
[tex]y - 3 = -\frac{20}{6}[/tex]
[tex]y = -\frac{20}{6} + \frac{18}{6}[/tex]
[tex]y = -\frac{2}{6}[/tex]
[tex]y = -\frac{1}{3}[/tex]
The coordinates of P are: [tex]P\left(\frac{5}{3},-\frac{1}{3}\right)[/tex].
A similar problem is given at https://brainly.com/question/4854238