contestada

What is the value of y so that the line segment with endpoints A(−3, y) and B(6, −4) is parallel to the line segment with endpoints C(7, 6) and D(−2, 8)?

y = −7
 y = 1
 y=1/2
 y = −2

Respuesta :

if both segments are parallel to each other, that means both segments have the same slope value, thus

[tex]\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ -3}}\quad ,&{{ y}})\quad % (c,d) B&({{ 6}}\quad ,&{{ -4}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{-4-y}{6-(-3)}\implies \cfrac{-4-y}{6+3} \\\\\\ \boxed{\cfrac{-4-y}{9}}[/tex]

[tex]\bf -------------------------------\\\\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) C&({{ 7}}\quad ,&{{ 6}})\quad % (c,d) D&({{ -2}}\quad ,&{{ 8}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{8-6}{-2-7}\implies \boxed{\cfrac{2}{-9}}\\\\ -------------------------------\\\\ \cfrac{-4-y}{9}=\cfrac{2}{-9}\implies -4-y=\cfrac{2\cdot 9}{-9}\implies -4-y=\cfrac{2}{-1} \\\\\\ -4-y=-2\implies -4+2=y\implies -2=y[/tex]