Respuesta :

[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\[/tex]

[tex]\bf \cfrac{smaller}{larger}\qquad \cfrac{s^2}{s^2}=\cfrac{18}{32}\implies \left( \cfrac{s}{s} \right)^2=\cfrac{18}{32}\implies \cfrac{s}{s}=\sqrt{\cfrac{18}{32}} \\\\\\ \cfrac{s}{s}=\cfrac{\sqrt{18}}{\sqrt{32}}\implies \cfrac{s}{s}=\cfrac{\sqrt{9\cdot 2}}{\sqrt{16\cdot 2}}\implies \cfrac{s}{s}=\cfrac{\sqrt{3^2\cdot 2}}{\sqrt{4^2\cdot 2}}\implies \cfrac{s}{s}=\cfrac{3\sqrt{2}}{4\sqrt{2}} \\\\\\ \cfrac{s}{s}=\cfrac{3}{2}[/tex]