Respuesta :
[tex]\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\
S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad
\begin{cases}
n=n^{th}\ term\\
a_1=\textit{first term's value}\\
r=\textit{common ratio}\\
----------\\
a_1=3\\
r=\frac{1}{2}\\
n=8
\end{cases}[/tex]
[tex]\bf S_8=3\left( \cfrac{1-\left( \frac{1}{2} \right)^8}{1-\frac{1}{2}} \right)\implies S_8=3\left( \cfrac{1-\frac{1^8}{2^8}}{1-\frac{1}{2}} \right) \\\\\\ S_8=3\left( \cfrac{1-\frac{1}{256}}{\frac{1}{2}} \right)\implies S_8=3\left( \cfrac{\frac{255}{256}}{\frac{1}{2}} \right)\implies S_8=3\left( \cfrac{255}{256}\cdot \cfrac{2}{1} \right) \\\\\\ S_8=3\left( \cfrac{255}{128} \right)\implies S_8=\cfrac{765}{128}[/tex]
[tex]\bf S_8=3\left( \cfrac{1-\left( \frac{1}{2} \right)^8}{1-\frac{1}{2}} \right)\implies S_8=3\left( \cfrac{1-\frac{1^8}{2^8}}{1-\frac{1}{2}} \right) \\\\\\ S_8=3\left( \cfrac{1-\frac{1}{256}}{\frac{1}{2}} \right)\implies S_8=3\left( \cfrac{\frac{255}{256}}{\frac{1}{2}} \right)\implies S_8=3\left( \cfrac{255}{256}\cdot \cfrac{2}{1} \right) \\\\\\ S_8=3\left( \cfrac{255}{128} \right)\implies S_8=\cfrac{765}{128}[/tex]
The sum of the first eight terms of a geometric series whose first term is 3 and whose common ratio is 1/2 is 5.9765625
Sum of geometric series
Series are the sum of sequences. The sum of geometric series is expressed as:
Sn = a(1-r^n)/1-r
Given the following
n = 8
a = 3
r = 1/2
Substitute
S8 = 3(1-(1/2)^8)/0.5
S8 = 3(1-1/256)/0.5
S8 = 3(255/256)/0.5
S8 = 5.9765625
Hence the sum of the first eight terms of a geometric series whose first term is 3 and whose common ratio is 1/2 is 5.9765625
Learn more on series here: https://brainly.com/question/723406