Respuesta :

The answer is:  " 4 cos² Θ " .
_____________________________________________
Explanation:
_____________________________________________

(cos Θ − cos Θ)²  + (cos Θ + cos Θ)²  

   =   0² + (cos Θ + cos Θ)²  ;

   =  0 + (2 cos Θ)² = (2 cos Θ)(2 cos Θ)  ;

   =  4 (cos Θ)² = 4 cos² Θ .
_____________________________

Answer:  The required simplified form is [tex]4\cos^2\theta.[/tex]

Step-by-step explanation:  We are given to simplify the following trigonometric expression :

[tex]T=(\cos \theta-\cos\theta)^2+(\cos \theta+\cos \theta)^2.[/tex]

To simplify, first we need to evaluate the terms within the brackets.

The simplification is as follows :

[tex]T\\\\=(\cos \theta-\cos\theta)^2+(\cos \theta+\cos \theta)^2\\\\=0^2+(2\cos\theta)^2\\\\=0+4\cos^2\theta\\\\=4\cos^2\theta.[/tex]

Thus, the required simplified form is [tex]4\cos^2\theta.[/tex]