Respuesta :
The answer is: " 4 cos² Θ " .
_____________________________________________
Explanation:
_____________________________________________
(cos Θ − cos Θ)² + (cos Θ + cos Θ)²
= 0² + (cos Θ + cos Θ)² ;
= 0 + (2 cos Θ)² = (2 cos Θ)(2 cos Θ) ;
= 4 (cos Θ)² = 4 cos² Θ .
_____________________________
_____________________________________________
Explanation:
_____________________________________________
(cos Θ − cos Θ)² + (cos Θ + cos Θ)²
= 0² + (cos Θ + cos Θ)² ;
= 0 + (2 cos Θ)² = (2 cos Θ)(2 cos Θ) ;
= 4 (cos Θ)² = 4 cos² Θ .
_____________________________
Answer: The required simplified form is [tex]4\cos^2\theta.[/tex]
Step-by-step explanation: We are given to simplify the following trigonometric expression :
[tex]T=(\cos \theta-\cos\theta)^2+(\cos \theta+\cos \theta)^2.[/tex]
To simplify, first we need to evaluate the terms within the brackets.
The simplification is as follows :
[tex]T\\\\=(\cos \theta-\cos\theta)^2+(\cos \theta+\cos \theta)^2\\\\=0^2+(2\cos\theta)^2\\\\=0+4\cos^2\theta\\\\=4\cos^2\theta.[/tex]
Thus, the required simplified form is [tex]4\cos^2\theta.[/tex]