Respuesta :
Answer:
[tex]\displaystyle b = 11[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
Functions
- Function Notation
Calculus
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Area of a Region Formula: [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
g(x) = 4x
Interval [1, b]
A = 240
Step 2: Solve for b
- Substitute in variables [Area of a Region Formula]: [tex]\displaystyle \int\limits^b_1 {4x} \, dx = 240[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle 4\int\limits^b_1 {x} \, dx = 240[/tex]
- [Integral] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle 4(\frac{x^2}{2}) \bigg| \limits^b_1 = 240[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle 4(\frac{b^2}{2} - \frac{1}{2}) = 240[/tex]
- [Distributive Property] Distribute 4: [tex]\displaystyle 2b^2 - 2 = 240[/tex]
- [Addition Property of Equality] Add 2 on both sides: [tex]\displaystyle 2b^2 = 242[/tex]
- [Division Property of Equality] Divide 2 on both sides: [tex]\displaystyle b^2 = 121[/tex]
- [Equality Property] Square root both sides: [tex]\displaystyle b = \pm 11[/tex]
- Choose: [tex]\displaystyle b = 11[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e