Respuesta :
[tex]\bf \qquad \textit{Compound Interest Earned Amount}
\\\\
A=P\left(1+r\right)^{t}
\quad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to &\$6000\\
r=rate\to 5.5\%\to \frac{5.5}{100}\to &0.055\\
t=years\to &6
\end{cases}
\\\\\\
A=6000(1+0.055)^6\implies A=(1.055)^6[/tex]
Answer:
William have $8273.057 in the account after 6 years.
Step-by-step explanation:
The given formula is [tex]A(t)=P(1+i)^t[/tex]
We have,
P = $6000
r = 5.5% = 0.055
t = 6
A =?
Substituting these values in the above formula to find A
[tex]A(t)=6000(1+0.055)^6\\\\A(t)=8273.057[/tex]
Therefore, William have $8273.057 in the account after 6 years.