Respuesta :

[tex]z=x^2+2y^2+6x-4y+22\\ z_x'=2x+6\\ z_y'=4y-4\\\\ 2x+6=0\\ 4y-4=0\\\\ 2x=-6\\ 4y=4\\\\ x=-3\\ y=1\\\\ [/tex]

We have a stationary point [tex](-3,1)[/tex]

[tex]z_{xx}''=2\\ z_{xy}''=z_{yx}=0\\ z_{yy}''=4[/tex]

[tex]2\cdot4-0^2=8 \ \textgreater \ 0[/tex] therefore there exist an extremum at  this point.

[tex]z_{xx}''\ \textgreater \ 0[/tex] therefore the extremum indeed is the minimum. 

[tex]z(-3,1)=(-3)^2+2\cdot1^2+6\cdot(-3)-4\cdot1+22=9+2-18-4+22\\ z(-3,1)=11[/tex]

So, the minimum is equal to 11.