Respuesta :
The equation of the circle is [tex] x^{2} + y^{2} +8x+12y+27=0[/tex]
we take x-es and y-s 'close' to each other, and complete the square:
[tex]x^{2}+8x + y^{2} +12y+27=0[/tex]
write the coefficients of the linear terms (the x and y with degree 1) as 2*'something', to see how to complete the square:
[tex]x^{2}+2*4*x + y^{2} +2*6*y+27=0[/tex]
which means that [tex]x^{2}+2*4*x[/tex] needs [tex] 4^{2} [/tex]
and [tex]y^{2} +2*6*y[/tex] needs [tex] 6^{2} [/tex] to become perfect square trinomials:
[tex](x^{2}+2*4*x + 4^{2})-4^{2} + (y^{2} +2*6*y+ 6^{2})-6^{2} +27=0[/tex]
[tex] (x+4)^{2}+ (y+6)^{2}=16+36-27 [/tex]
[tex] (x+4)^{2}+ (y+6)^{2}=25 [/tex]
[tex](x-(-4))^{2}+ (y-(-6))^{2}= 5^{2} [/tex]
Answer: [tex](x-(-4))^{2}+ (y-(-6))^{2}= 5^{2} [/tex]
we take x-es and y-s 'close' to each other, and complete the square:
[tex]x^{2}+8x + y^{2} +12y+27=0[/tex]
write the coefficients of the linear terms (the x and y with degree 1) as 2*'something', to see how to complete the square:
[tex]x^{2}+2*4*x + y^{2} +2*6*y+27=0[/tex]
which means that [tex]x^{2}+2*4*x[/tex] needs [tex] 4^{2} [/tex]
and [tex]y^{2} +2*6*y[/tex] needs [tex] 6^{2} [/tex] to become perfect square trinomials:
[tex](x^{2}+2*4*x + 4^{2})-4^{2} + (y^{2} +2*6*y+ 6^{2})-6^{2} +27=0[/tex]
[tex] (x+4)^{2}+ (y+6)^{2}=16+36-27 [/tex]
[tex] (x+4)^{2}+ (y+6)^{2}=25 [/tex]
[tex](x-(-4))^{2}+ (y-(-6))^{2}= 5^{2} [/tex]
Answer: [tex](x-(-4))^{2}+ (y-(-6))^{2}= 5^{2} [/tex]
Answer:
Step Reason
x2 + y2 - 8x + 12y + 27 = 0 given
x2 - 8x + y2 + 12y = -27 Isolate the constant term
x2 - 8x + 16 + y2 + 12y + 36 = -27 + 16 + 36 Complete the square by adding . 16 and 36 to both sides.
(x2 - 2∙4∙x + 42) + y2 + 12y + 36 = 25 Group and rearrange terms in x.
(x - 4)2 + y2 + 12y + 36 = 25 (a - b)2 = a2 - 2ab + b2
(x - 4)2 + (y2 + 2∙6∙y + 62) = 25 Group and rearrange terms in y.
(x - 4)2 + (y + 6)2 = 25 (a + b)2 = a2 + 2ab + b2
(x - 4)2 + (y + 6)2 = 52 Take the square root to find r = 5.
Step-by-step explanation:
this is the exact answer from plato
hope this helps a little bit :))