Respuesta :
Permutation
[tex]6P2=\frac{6!}{(6-2)!}=\frac{4!\cdot 5 \cdot 6}{4!}=5 \cdot 6=30[/tex]
[tex]6P2=\frac{6!}{(6-2)!}=\frac{4!\cdot 5 \cdot 6}{4!}=5 \cdot 6=30[/tex]
The value of the [tex]\rm ^6p_2[/tex] is 30.
We have to determine
The value of P(6,2).
According to the question
The value of the [tex]\rm ^6p_2[/tex] is determined by using permutation.
The probability of selecting an ordered set of 'r' objects from a group of 'n' number of objects.
The order of objects matters in the case of permutation.
The formula to find [tex]\rm ^np_r[/tex] is given by:
[tex]\rm ^np_r = \dfrac{n!}{(n-r)!}[/tex]
Substitute n = 6 and r = 2 in the formula;
[tex]\rm ^np_r = \dfrac{n!}{(n-r)!}\\ \\ \rm ^6p_2 = \dfrac{6!}{(6-2)!}\\ \\ \rm ^6p_2= \dfrac{6 \times 5\times 4 \times 3\times2 \times 1}{4!}\\ \\ ^6p_2= \dfrac{6 \times 5\times 4 \times 3\times2 \times 1}{4\times 3 \times2 \times 1}\\ \\ ^6p_2= 6 \times 5}\\ \\ ^6p_2= 30[/tex]
Hence, The value of the [tex]\rm ^6p_2[/tex] is 30.
To know more about Permutation click the link given below.
https://brainly.com/question/10148445