[tex]\bf \textit{Sum and Difference Identities}
\\ \quad \\
sin({{ \alpha}} + {{ \beta}})=sin({{ \alpha}})cos({{ \beta}}) + cos({{ \alpha}})sin({{ \beta}})
\\ \quad \\
sin({{ \alpha}} - {{ \beta}})=sin({{ \alpha}})cos({{ \beta}})- cos({{ \alpha}})sin({{ \beta}})
\\ \quad \\
\boxed{cos({{ \alpha}} + {{ \beta}})= cos({{ \alpha}})cos({{ \beta}})- sin({{ \alpha}})sin({{ \beta}})}
\\ \quad \\
cos({{ \alpha}} - {{ \beta}})= cos({{ \alpha}})cos({{ \beta}}) + sin({{ \alpha}})sin({{ \beta}})\\\\
------------------------[/tex]
[tex]\bf cos(x)cos(3x)-sin(x)sin(3x)=0\implies cos(x+3x)=0
\\\\\\
cos(4x)=0\implies cos^{-1}[cos(4x)]=cos^{-1}(0)\implies 4x=cos^{-1}(0)
\\\\\\
4x=
\begin{cases}
\frac{\pi }{2}\\\\
\frac{3\pi }{2}
\end{cases}\implies
\begin{cases}
4x=\cfrac{\pi }{2}\implies &\measuredangle x=\cfrac{\pi }{8}\\\\
4x=\cfrac{3\pi }{2}\implies &\measuredangle x=\cfrac{3\pi }{8}
\end{cases}[/tex]