jnkwhre
contestada

Two particles. A and B, of masses m and 3m, are moving along X and Y axes respectively with the same speed v. They collide at the origin, and coalesce into one body, after the collision.
a) What is the velocity of this coalesced mass?
b) find the loss of energy during the collision.
p.s. don't put irrelevant answers ,tysm!​

Respuesta :

msm555

Answer:

a) [tex]\sf \sqrt{\dfrac{5}{8}}v [/tex]

b) [tex]\bold{\sf \dfrac{3}{4} m v^2}[/tex]

Explanation:

Let's go through the given information and solve for the velocity of the coalesced mass [tex]\bold{\sf (V)}[/tex] and then find the loss of energy during the collision.

Given information:

1. Law of conservation of linear momentum in the X-direction:

  • [tex]\sf mv = 4mV \cos(\alpha) [/tex] ...........(i)

2. Law of conservation of linear momentum in the Y-direction:

  • [tex]\sf 3mv = 4mV \sin(\alpha) [/tex] ...........(ii)

3. Find [tex]\bold{\sf \tan(\alpha)}[/tex]:

  • [tex]\sf \tan(\alpha) = 3 [/tex] ...........(iii)

Now, let's find [tex]\bold{\sf \cos(\alpha)}[/tex] and [tex]\bold{\sf \sin(\alpha)}[/tex] using the given information:

  • [tex]\sf \cos(\alpha) = \dfrac{v}{4V} [/tex] ...........(iv)

  • [tex]\sf \sin(\alpha) = \dfrac{3v}{4V} [/tex] ...........(v)

Now, use [tex]\bold{\sf \cos^2(\alpha) + \sin^2(\alpha) = 1}[/tex] to find [tex]\bold{\sf V}[/tex]:

  • [tex]\sf \left(\dfrac{v}{4V}\right)^2 + \left(\dfrac{3v}{4V}\right)^2 = 1 [/tex] ...........(vi)

Now, solve for [tex]\bold{\sf V}[/tex]:

[tex]\sf \dfrac{v^2}{16V^2} + \dfrac{9v^2}{16V^2} = 1 [/tex]

[tex]\sf \dfrac{10v^2}{16V^2} = 1 [/tex]

[tex]\sf V^2 = \dfrac{10v^2}{16} [/tex]

[tex]\sf V= \sqrt{\dfrac{10v^2}{16}} [/tex]

[tex]\sf V = \sqrt{\dfrac{5}{8}}v [/tex]

So, the velocity of the coalesced mass [tex]\bold{\sf (V)}[/tex] is:

[tex]\sf \sqrt{\dfrac{5}{8}}v [/tex]

[tex]\begin{aligned} \cline \end{aligned}[/tex]

b) Loss of Energy During the Collision:

The loss of energy ([tex]\bold{\Delta KE}[/tex]) is the initial kinetic energy minus the final kinetic energy:

[tex]\sf \Delta KE = KE_{\textsf{initial}} - KE_{\textsf{final}} [/tex]

The initial kinetic energy is the sum of the kinetic energies of particles A and B:

[tex]\sf KE_{\textsf{initial}} = \dfrac{1}{2} m v^2 + \dfrac{1}{2} (3m) v^2 [/tex]

The final kinetic energy is the kinetic energy of the coalesced mass:

[tex]\sf KE_{\textsf{final}} = \dfrac{1}{2} (4m)V^2 [/tex]

Substitute the values of [tex]\bold{\sf V}[/tex] into the expressions for initial and final kinetic energies:

[tex]\sf KE_{\textsf{initial}} = \dfrac{1}{2} m v^2 + \dfrac{1}{2} (3m) v^2 [/tex]

[tex]\sf KE_{\textsf{final}} = \dfrac{1}{2} (4m) \left(\sqrt{\dfrac{4}{5}}v\right)^2 [/tex]

Calculate [tex]\bold{\sf \Delta KE}[/tex]:

[tex]\sf \Delta KE = \dfrac{1}{2} m v^2 + \dfrac{1}{2} (3m) v^2 - \dfrac{1}{2} (4m) \left(\sqrt{\dfrac{5}{8}}v\right)^2 [/tex]

[tex]\sf \Delta KE = \dfrac{1}{2} m v^2 + \dfrac{1}{2} (3m) v^2 - \dfrac{1}{2} (4m) \left(\dfrac{5}{8}\right) v^2 [/tex]

[tex]\sf \Delta KE = \dfrac{1}{2} m v^2 + \dfrac{1}{2} (3m) v^2 - 2\cdot \dfrac{5}{8} m v^2 [/tex]

[tex]\sf \Delta KE = \dfrac{1}{2} m v^2 + \dfrac{3}{2} mv^2 -\dfrac{5}{4} m v^2 [/tex]

[tex]\sf \Delta KE = mv^2 \left( \dfrac{1}{2} + \dfrac{3}{2} -\dfrac{5}{4} \right) [/tex]

[tex]\sf \Delta KE = mv^2 \left( \dfrac{ 1\cdot 2 + 3\cdot 2 - 5 }{4} \right)[/tex]

[tex]\sf \Delta KE = \left(\dfrac{2+6-5}{4} \right)m v^2 [/tex]

[tex]\sf \Delta KE = \dfrac{3}{4} m v^2 [/tex]

Therefore, the loss of energy during the collision is:

[tex]\bold{\sf \dfrac{3}{4} m v^2}[/tex]

Ver imagen msm555