Answer:
712.5 miles
Step-by-step explanation:
To approximate the distance that Odie travels during the 90-minute run using trapezoidal rule and midpoint Riemann sums, we can follow these steps:
Calculate the average speed at each interval:
[tex] \textsf{Average Speed} = \dfrac{\textsf{Speed}_i + \textsf{Speed}_{i+1}}{2} [/tex]
Multiply the average speed by the time interval:
[tex] \textsf{Distance}_i = \textsf{Average Speed}_i \cdot \textsf{Time Interval}_i [/tex]
Sum up all the distances to get the total distance:
[tex] \textsf{Total Distance} = \sum_{i=1}^{n} \textsf{Distance}_i [/tex]
Let's perform the calculations for both trapezoidal rule and midpoint Riemann sums.
Trapezoidal Rule:
[tex] \textsf{Distance}_i = \dfrac{\textsf{Speed}_i + \textsf{Speed}_{i+1}}{2} \cdot \textsf{Time Interval}_i [/tex]
[tex] \textsf{Distance}_1 = \dfrac{11 + 10}{2} \cdot 15 = 157.5 [/tex]
[tex] \textsf{Distance}_2 = \dfrac{10 + 10}{2} \cdot 15 = 150 [/tex]
[tex] \textsf{Distance}_3 = \dfrac{10 + 9}{2} \cdot 15 = 142.5 [/tex]
[tex] \textsf{Distance}_4 = \dfrac{9 + 7}{2} \cdot 15 = 120 [/tex]
[tex] \textsf{Distance}_5 = \dfrac{7 + 6}{2} \cdot 15 = 97.5 [/tex]
[tex] \textsf{Distance}_6 = \dfrac{6 + 0}{2} \cdot 15 = 45 [/tex]
[tex] \textsf{Total Distance (Trapezoidal)} = 157.5 + 150 + 142.5 \\+ 120 + 97.5 + 45 \\\\ = 712.5 [/tex]
Midpoint Riemann Sums:
[tex] \textsf{Distance}_i = \textsf{Speed}_{\textsf{midpoint}_i} \cdot \textsf{Time Interval}_i [/tex]
[tex] \textsf{Midpoint}_1 = \dfrac{11 + 10}{2} = 10.5 [/tex]
[tex] \textsf{Midpoint}_2 = \dfrac{10 + 10}{2} = 10 [/tex]
[tex] \textsf{Midpoint}_3 = \dfrac{10 + 9}{2} = 9.5 [/tex]
[tex] \textsf{Midpoint}_4 = \dfrac{9 + 7}{2} = 8 [/tex]
[tex] \textsf{Midpoint}_5 = \dfrac{7 + 6}{2} = 6.5 [/tex]
[tex] \textsf{Midpoint}_6 = \dfrac{6 + 0}{2} = 3 [/tex]
[tex] \textsf{Distance}_1 = 10.5 \cdot 15 = 157.5 [/tex]
[tex] \textsf{Distance}_2 = 10 \cdot 15 = 150 [/tex]
[tex] \textsf{Distance}_3 = 9.5 \cdot 15 = 142.5 [/tex]
[tex] \textsf{Distance}_4 = 8 \cdot 15 = 120 [/tex]
[tex] \textsf{Distance}_5 = 6.5 \cdot 15 = 97.5 [/tex]
[tex] \textsf{Distance}_6 = 3 \cdot 15 = 45 [/tex]
[tex] \textsf{Total Distance (Midpoint)} = 157.5 + 150 + 142.5 \\+ 120 + 97.5 + 45 \\\\ = 712.5 [/tex]
Therefore, both the Trapezoidal Rule and Midpoint Riemann Sums yield a total distance of 712.5 miles for Odie's 90-minute run.