Answer:
3875.8 mm²
Step-by-step explanation:
Angles around a point sum to 360°, so the central angle of the shaded major sector is:
[tex]360^{\circ}-68^{\circ}=292^{\circ}[/tex]
To find the area of the major sector OAB of circle O, we can use the area of a sector formula:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Area of a Sector}}\\\\A= \left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$A$ is the area.}\\\phantom{ww}\bullet\;\textsf{$r$ is the radius.}\\\phantom{ww}\bullet\;\textsf{$\theta$ is the central angle in measured in degrees.}\end{array}}[/tex]
Substitute θ = 292° and r = 39 into the formula, and solve for A:
[tex]A= \left(\dfrac{292^{\circ}}{360^{\circ}}\right) \pi \cdot 39^2[/tex]
[tex]A= \left(\dfrac{73}{90}\right) \pi \cdot 1521[/tex]
[tex]A= \dfrac{12447}{10} \pi[/tex]
[tex]A=3875.7828567...[/tex]
[tex]A=3875.8\; \sf mm^2\;(1\;d.p.)[/tex]
Therefore, the shaded area OAB is 3875.8 mm².