✰Answer:
81 !
✰Step-by-step explanation:
To simplify the expression 3^(2) * 3^(5) * 3^(-3), we can use the property of exponents which states that when multiplying terms with the same base, you add their exponents.
First, let's simplify the exponents:
3^(2) = 3 * 3 = 9
3^(5) = 3 * 3 * 3 * 3 * 3 = 243
3^(-3) = 1 / (3 * 3 * 3) = 1/27
Now, let's substitute these values back into the expression:
9 * 243 * (1/27)
Next, let's simplify the expression by multiplying the numbers together:
9 * 243 = 2187
Finally, let's divide the result by 27:
2187 / 27 = 81
Therefore, the simplified form of 3^(2) * 3^(5) * 3^(-3) is 81.
✰⠀⠀⠀⢀⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⣠⠾⠛⠶⣄⢀⣠⣤⠴⢦⡀⠀⠀⠀⠀
⠀⠀⠀⢠⡿⠉⠉⠉⠛⠶⠶⠖⠒⠒⣾⠋⠀⢀⣀⣙⣯⡁⠀⠀⠀⣿⠀⠀⠀⠀
⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⢯⣼⠋⠉⠙⢶⠞⠛⠻⣆⠀⠀⠀
⠀⠀⠀⢸⣧⠆⠀⠀⠀⠀⠀⠀⠀⠀⠻⣦⣤⡤⢿⡀⠀⢀⣼⣷⠀⠀⣽⠀⠀⠀
⠀⠀⠀⣼⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠙⢏⡉⠁⣠⡾⣇⠀⠀⠀
⠀⠀⢰⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠋⠉⠀⢻⡀⠀⠀
⣀⣠⣼⣧⣤⠀⠀⠀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡀⠀⠀⠐⠖⢻⡟⠓⠒
⠀⠀⠈⣷⣀⡀⠀⠘⠿⠇⠀⠀⠀⢀⣀⣀⠀⠀⠀⠀⠿⠟⠀⠀⠀⠲⣾⠦⢤⠀
⠀⠀⠋⠙⣧⣀⡀⠀⠀⠀⠀⠀⠀⠘⠦⠼⠃⠀⠀⠀⠀⠀⠀⠀⢤⣼⣏⠀⠀⠀
⠀⠀⢀⠴⠚⠻⢧⣄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⠞⠉⠉⠓⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠈⠉⠛⠛⠶⠶⠶⣶⣤⣴⡶⠶⠶⠟⠛⠉⠀⠀⠀⠀⠀⠀⠀- shoooo