Respuesta :

[tex]\bf \textit{we do the same here, the \underline{switcharoo} of the variables} \\\\\\ f(x)=y=0.5(3)^x\qquad inverse\implies \boxed{x}=0.5(3)^{\boxed{y}}\\\\ -------------------------------\\\\ \textit{Logarithm of exponentials}\\\\ log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x)\impliedby \textit{we'll use this}\\\\ -------------------------------\\\\[/tex]

[tex]\bf x=0.5(3)^y\implies \cfrac{x}{0.5}=3^y\implies log\left( \frac{x}{0.5} \right)=log(3^y) \\\\\\ log\left( \frac{x}{0.5} \right)=y\cdot log(3)\implies \cfrac{log\left( \frac{x}{0.5} \right)}{log(3)}=y\impliedby f^{-1} \\\\\\ thus\qquad \cfrac{log\left( \frac{7}{0.5} \right)}{log(3)}=f^{-1}(7)[/tex]

and surely you know how much that'd be.

Answer:

naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Step-by-step explanation: