Respuesta :
Let the length of the base be x.
Height = 3x
Area = 726
[tex] \frac{1}{2} bh[/tex] = 726
[tex] \frac{1}{2}* 3x*x[/tex] = 726
[tex]3 x^{2} [/tex] = 1452
[tex] x^{2} [/tex] = 484
x = 22.
Hence,
The length of the base is 22 cm.
The height of the triangle is 66 cm.
Height = 3x
Area = 726
[tex] \frac{1}{2} bh[/tex] = 726
[tex] \frac{1}{2}* 3x*x[/tex] = 726
[tex]3 x^{2} [/tex] = 1452
[tex] x^{2} [/tex] = 484
x = 22.
Hence,
The length of the base is 22 cm.
The height of the triangle is 66 cm.
Answer:
22 cm is the height of the right triangle .
Step-by-step explanation:
Area of the triangle = A = [tex]726 cm^2[/tex]
Let the base 'b' of the triangle be x
A right triangle's height 'h' is 3 times the length of its base we can also be written as:
= h = 3x
Area of the triangle = [tex]\frac{1}{2}b\times h[/tex]
[tex]A=\frac{1}{2}b\times h[/tex]
[tex]726 cm^2=\frac{1}{2}\times x\times 3x[/tex]
[tex]x^2=\frac{726 cm^2\times 2}{3}[/tex]
[tex]x=22 cm[/tex]
Height of the right triangle = h = 3x = 3 × 22 cm = 66 cm