Clint is trying to calculate the distance between point G(13, 2) and point H(1, 7). Which of the following expressions will he use? (6 points) square root of the quantity of 7 minus 2 all squared plus 1 minus 13 all squared square root of the quantity of 7 minus 13 all squared plus 1 minus 2 all squared square root of the quantity of 7 minus 1 all squared plus 13 minus 2 all squared square root of the quantity of 1 minus 7 all squared plus 2 minus 13 all squared

Respuesta :

[tex]\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) G&({{ 13}}\quad ,&{{ 2}})\quad % (c,d) H&({{ 1}}\quad ,&{{ 7}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ d=\sqrt{(1-13)^2+(7-2)^2}[/tex]

Answer:

square root of the quantity of [tex]7[/tex] minus [tex]2[/tex] all squared plus [tex]1[/tex] minus [tex]13[/tex] all squared

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to


[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]


we have

[tex]G(13,2)\\H(1,7)[/tex]  

substitute the values


[tex]d=\sqrt{(7-2)^{2}+(1-13)^{2}}[/tex]  -----> this is the expression

[tex]d=\sqrt{(5)^{2}+(-12)^{2}}[/tex]


[tex]d=\sqrt{169}\ units[/tex]


[tex]dGH=13\ units[/tex]