[tex]\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\
% function transformations for trigonometric functions
\begin{array}{rllll}
% left side templates
f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}}
\\\\
f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\
f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}}
\end{array}
\\\\
-------------------\\\\[/tex]
[tex]\bf \bullet \textit{ stretches or shrinks}\\
\left. \qquad \right. \textit{horizontally by amplitude } |{{ A}}|\\\\
\bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\
\left. \qquad \right. \textit{reflection over the x-axis}
\\\\
\bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\
\left. \qquad \right. \textit{reflection over the y-axis}[/tex]
[tex]\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\
\left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\
\bullet \textit{vertical shift by }{{ D}}\\
\left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\
\left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\[/tex]
[tex]\bf \bullet \textit{function period or frequency}\\
\left. \qquad \right. \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\
\left. \qquad \right. \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta)[/tex]
now, with that template above in mind, let's see.
reflected over the x-axis, that means A is negative.
vertically shrunk by 0.25 or 1/4, that means A is negative 4, or -4.
shifted to the left, that means C/B is positive
shifted by 65°, that means, we could use the default B = 1, and C = 65°, that way we end with C/B = 65/1 or just +65
and shifted downwards by 1 unit, that means D = -1.
[tex]\bf f(x)=-4sin(1x+65^o)-1\implies f(x)=-4sin(x+65^o)-1[/tex]
and looks more or less like the picture below.