Respuesta :
I'm assuming you know the basic trigonometric functions in a right triangle:
sine = opposite / hypotenuse, cosine = adjacent / hypotenuse
tangent = opposite / adjacent
See attached diagram. Draw a segment perpendicular to the base forming a right triangle and dividing the base into 2 equal parts.
The apex angle is split in half, so 12.5 degrees in each half.
x is the opposite side, 2.5 m is the hypotenuse, so use the sine ratio.
[tex]\frac{x}{2.5}=\sin 12.5^\circ[/tex]
Multiply both sides by 2.5.
[tex]x=2.5(\sin 12.5^\circ)[/tex]
A calculator gives x = .541
The base is then double that value!
sine = opposite / hypotenuse, cosine = adjacent / hypotenuse
tangent = opposite / adjacent
See attached diagram. Draw a segment perpendicular to the base forming a right triangle and dividing the base into 2 equal parts.
The apex angle is split in half, so 12.5 degrees in each half.
x is the opposite side, 2.5 m is the hypotenuse, so use the sine ratio.
[tex]\frac{x}{2.5}=\sin 12.5^\circ[/tex]
Multiply both sides by 2.5.
[tex]x=2.5(\sin 12.5^\circ)[/tex]
A calculator gives x = .541
The base is then double that value!

Let CH be the altitude.
CH is also the angle bisector of angle C, so:
m(ACH)=m(HCB)=25°/2=12.5°
CH is also a median, so |AH|=|HB|
Method 1:
by right angle trigonometry, in triangle HBC
|HB|=|CB|*sin12.5° (as sine = opposite side / hypotenuse)
|HB|= 2.5 * 0.216 = 0.54 (meters)
thus, |AB|=2|HB|=2*0.54 m = 1.08 m
Method 2:
according to the Cosine law:
[tex] |AB|^{2}= |CB|^{2}+ |CA|^{2}-2*|CB|*|CA|*cos(C)[/tex]
then substituting the values we know:
[tex] |AB|^{2}= (2.5)^{2}+ (2.5)^{2}-2*(2.5)*(2.5)*cos25[/tex]
[tex] |AB|^{2}= 2*(2.5)^{2}-2*(2.5)^{2}(0.906)[/tex]
[tex] |AB|^{2}= 2*(2.5)^{2}(1-0.906)[/tex]
[tex] |AB|^{2}= (2.5)^{2}(0.188)[/tex]
taking the square root of both sides:
[tex]|AB|= 2.5* \sqrt{0.2}=2.5*0.43358=1.08[/tex] (meters)
Answer: 1.08 m
CH is also the angle bisector of angle C, so:
m(ACH)=m(HCB)=25°/2=12.5°
CH is also a median, so |AH|=|HB|
Method 1:
by right angle trigonometry, in triangle HBC
|HB|=|CB|*sin12.5° (as sine = opposite side / hypotenuse)
|HB|= 2.5 * 0.216 = 0.54 (meters)
thus, |AB|=2|HB|=2*0.54 m = 1.08 m
Method 2:
according to the Cosine law:
[tex] |AB|^{2}= |CB|^{2}+ |CA|^{2}-2*|CB|*|CA|*cos(C)[/tex]
then substituting the values we know:
[tex] |AB|^{2}= (2.5)^{2}+ (2.5)^{2}-2*(2.5)*(2.5)*cos25[/tex]
[tex] |AB|^{2}= 2*(2.5)^{2}-2*(2.5)^{2}(0.906)[/tex]
[tex] |AB|^{2}= 2*(2.5)^{2}(1-0.906)[/tex]
[tex] |AB|^{2}= (2.5)^{2}(0.188)[/tex]
taking the square root of both sides:
[tex]|AB|= 2.5* \sqrt{0.2}=2.5*0.43358=1.08[/tex] (meters)
Answer: 1.08 m
