keeping in mind that, in 1 liter, there are 1000 cm³, and that the concentration amount of the chemical for say 25% will be 0.25 of whatever the quantity is, so... we convert the percentage amounts to decimal formats.
[tex]\bf \begin{array}{lccclll}
&\stackrel{cm^3}{amount}&\stackrel{\textit{\% of chemical}}{concentration}&\stackrel{total~amount}{concentration}\\
&------&------&------\\
solution&1000&0.4&400\\
water&x&0&0x\\
------&------&------&------\\
mixture&y&0.25&0.25y
\end{array}[/tex]
so.. whatever "x" and "y" are, we know that 1000 + x = y.
and that 400 + 0x = 0.25y.
thus then
[tex]\bf \begin{cases}
1000+x=\boxed{y}\\
400+0x=0.25y\\
400=0.25y\\
----------\\
400=0.25\left( \boxed{1000+x} \right)
\end{cases}
\\\\\\
400=250+0.25x\implies 150=0.25x\implies \cfrac{150}{0.25}=x\implies 600=x[/tex]