Respuesta :

Answer:

[tex]\[y=-\frac{4}{9}x+11\][/tex]

Step-by-step explanation:

Equation of the given line is [tex]\[-9x+4y=8\][/tex]

Slope of the line = [tex]\[\frac{9}{4}\][/tex]

Slope of the perpendicular line  = [tex]\[-\frac{4}{9}\][/tex]

Equation of the line perpendicular to the given line is [tex]\[y=mx+c\][/tex]

[tex]\[y=-\frac{4}{9}x+c\][/tex]

But this line passes through (9,7)

Substituting the values in the equation:

[tex]\[7=-4+c\][/tex]

=> [tex]\[c=7+4=11\][/tex]

So the overall equation of the parallel line is given by [tex]\[y=-\frac{4}{9}x+11\][/tex]