[tex]\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^{ n}} \qquad \qquad
\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}
\\\\\\
\left.\qquad \qquad \right.\textit{negative exponents}\\\\
a^{-{ n}} \implies \cfrac{1}{a^{ n}}
\qquad \qquad
\cfrac{1}{a^{ n}}\implies a^{-{ n}}
\qquad \qquad
a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\
-------------------------------\\\\[/tex]
[tex]\bf \cfrac{\left( 81x^3y^{-\frac{1}{3}} \right)^{\frac{1}{4}}}{(x^2y)^{\frac{1}{4}}}\implies \cfrac{81^{\frac{1}{4}}x^{3\cdot {\frac{1}{4}}}y^{-\frac{1}{3}\cdot {\frac{1}{4}}}}{x^{2\cdot {\frac{1}{4}}}y^{\frac{1}{4}}}\implies
\cfrac{81^{\frac{1}{4}}x^{\frac{3}{4}}y^{-\frac{1}{12}}}{x^{\frac{2}{4}} y^{\frac{1}{4}}}[/tex]
[tex]\bf \cfrac{81^{\frac{1}{4}}x^{\frac{3}{4}}x^{-\frac{2}{4}}}{ y^{\frac{1}{4}}y^{\frac{1}{12}}}\implies \cfrac{(3^4)^{\frac{1}{4}}x^{\frac{3}{4}-\frac{2}{4}}}{y^{\frac{1}{4}+\frac{1}{12}}}\implies \cfrac{3^{4\cdot \frac{1}{4}}x^{\frac{1}{4}}}{y^{\frac{4}{12}}}\implies \cfrac{3^{\frac{4}{4}}x^{\frac{1}{4}}}{y^{\frac{1}{3}}}
\\\\\\
\cfrac{3\sqrt[4]{x}}{\sqrt[3]{y}}[/tex]