Respuesta :
The path [tex]C[/tex] is parameterized by
[tex]\mathbf r(t)=\langle x(t),y(t)\rangle=\langle t^3,t\rangle[/tex]
with [tex]0\le t\le4[/tex].
We have
[tex]\dfrac{\mathrm d\mathbf r}{\mathrm dt}=\langle3t^2,1\rangle[/tex]
[tex]\left\|\dfrac{\mathrm d\mathbf r}{\mathrm dt}\right\|=\sqrt{9t^4+1}[/tex]
So the line integral is
[tex]\displaystyle\int_Cy^3\,\mathrm dS=\int_{t=0}^{t=4}t^3\sqrt{9t^4+1}\,\mathrm dt[/tex]
Substitute [tex]u=9t^4+1[/tex], so that [tex]\mathrm du=36t^3\,\mathrm dt[/tex].
[tex]=\displaystyle\frac1{36}\int_{u=1}^{u=2305}\sqrt u\,\mathrm du[/tex]
[tex]=\dfrac{2305^{3/2}-1}{54}[/tex]
[tex]\approx2049.31[/tex]
[tex]\mathbf r(t)=\langle x(t),y(t)\rangle=\langle t^3,t\rangle[/tex]
with [tex]0\le t\le4[/tex].
We have
[tex]\dfrac{\mathrm d\mathbf r}{\mathrm dt}=\langle3t^2,1\rangle[/tex]
[tex]\left\|\dfrac{\mathrm d\mathbf r}{\mathrm dt}\right\|=\sqrt{9t^4+1}[/tex]
So the line integral is
[tex]\displaystyle\int_Cy^3\,\mathrm dS=\int_{t=0}^{t=4}t^3\sqrt{9t^4+1}\,\mathrm dt[/tex]
Substitute [tex]u=9t^4+1[/tex], so that [tex]\mathrm du=36t^3\,\mathrm dt[/tex].
[tex]=\displaystyle\frac1{36}\int_{u=1}^{u=2305}\sqrt u\,\mathrm du[/tex]
[tex]=\dfrac{2305^{3/2}-1}{54}[/tex]
[tex]\approx2049.31[/tex]
∫C) y³ × ds = 7962624,02 surface units
∫C) y³ × ds . where C x = t³ y = t with 0 ≤ t ≤ 4
∫C) y³ × ds = ∫∫R) F(r(t) × dr
Then F (r(t)) = y³ . = t³ . r ( t³ , t ) then . dr/dt = (3×t² , 1 )
|| dr/dt|| = √ ( 3×t²)² + (1)²
|| dr/dt|| = √9×t⁴ + 1
∫C) y³ × ds = ∫∫R) F(r(t) × dr . = ∫₀⁴ t³ ×√9×t⁴ + 1 ×dt
To solve the integral we make a change of variables, we call
9×t⁴ + 1 = v . then . 36×t³ ×dt = dv
Now as we change variables we need to change the limits of integration as follows:If 9×t⁴ + 1 = v . then when t = 0 v = 1
And when t = 4 . then . v = 9×(4)⁴ + 1 . = 2305
The integral takes that form
∫₁²³⁰⁵ [ 1/36)× √v × dv . = (1/36) ×∫₁²³⁰⁵ (v)¹/² dv
= (1/36)×(2/3) × v³/² |₁²³⁰⁵ = (2/108)× √v³|₁²³⁰⁵ =
= (2/108) [ √( 9×t⁴ + 1 )³|₀⁴ = (2/108) [ √( 9⁴×4¹⁶ + 1 - √(9)⁴×0 + 1)
= (2/108) [√( (9⁴×4¹⁶ + 1 ) . + 1 ]
Neglecting in √( (9⁴×4¹⁶ + 1 ) 1 unit . we get 9²×4⁸ = 429981696
= (2/108) [429981697]
= 7962624,02