Can someone please help me with problem #10, #11, and #12? Please show your work. This is algebra 2 by the way.

Directions: Given f(x) = 1 - 6x, g(x) = x^2 -4, and h(x) = 2x^2 - 9x + 2, find each function. State any restrictions in the domain.

10. (f • g)(x)

11. (h/f)(x)

12. (g o f)(x)​

Respuesta :

msm555

Answer:

10)[tex] (f \cdot g)(x) = -6x^3 + x^2 + 24x - 4 [/tex]

11) [tex] \left(\dfrac{h}{f}\right) = \dfrac{2x^2 - 9x + 2}{1 - 6x} [/tex] restriction: [tex] x = \dfrac{1}{6} [/tex]

12) [tex] (g \circ f)(x) = 36x^2 - 12x - 3 [/tex]

Step-by-step explanation:

Problem 10: [tex] (f \cdot g)(x) [/tex]

To find [tex] (f \cdot g)(x) [/tex], we need to multiply [tex] f(x) [/tex] and [tex] g(x) [/tex].

Given:

  • [tex] f(x) = 1 - 6x [/tex]
  • [tex] g(x) = x^2 - 4 [/tex]

We compute:

[tex] (f \cdot g)(x) = f(x) \cdot g(x) [/tex]

[tex] = (1 - 6x)(x^2 - 4) [/tex]

[tex] = x^2 - 4 - 6x^3 + 24x [/tex]

[tex] = -6x^3 + x^2 + 24x - 4 [/tex]

So, [tex] (f \cdot g)(x) = -6x^3 + x^2 + 24x - 4 [/tex].

There are no domain restrictions for this function.

Problem 11: [tex] \left(\dfrac{h}{f}\right)(x) [/tex]

To find [tex] \left(\dfrac{h}{f}\right)(x) [/tex], we need to divide [tex] h(x) [/tex] by [tex] f(x) [/tex].

Given:

  • [tex] f(x) = 1 - 6x [/tex]
  • [tex] h(x) = 2x^2 - 9x + 2 [/tex]

We compute:

[tex] \left(\dfrac{h}{f}\right)(x) = \dfrac{h(x)}{f(x)} [/tex]

[tex] = \dfrac{2x^2 - 9x + 2}{1 - 6x} [/tex]

To find the domain, we need to make sure that the denominator [tex] 1 - 6x [/tex] is not equal to zero:

[tex] 1 - 6x \neq 0 [/tex]

[tex] 6x \neq 1 [/tex]

[tex] x \neq \dfrac{1}{6} [/tex]

So, the domain of [tex] \left(\dfrac{h}{f}\right)(x) [/tex] is all real numbers except [tex] x = \dfrac{1}{6} [/tex].

Problem 12: [tex] (g \circ f)(x) [/tex]

To find [tex] (g \circ f)(x) [/tex], we need to perform the composition [tex] g(f(x)) [/tex].

Given:

  • [tex] f(x) = 1 - 6x [/tex]
  • [tex] g(x) = x^2 - 4 [/tex]

We compute:

[tex] (g \circ f)(x) = g(f(x)) [/tex]

[tex] = g(1 - 6x) [/tex]

[tex] = (1 - 6x)^2 - 4 [/tex]

[tex] = (1 - 12x + 36x^2) - 4 [/tex]

[tex] = 36x^2 - 12x - 3 [/tex]

So, [tex] (g \circ f)(x) = 36x^2 - 12x - 3 [/tex].

There are no domain restrictions for this function.