Respuesta :

x= 13/9 and y= 43/27

Answer:

[tex]\left(\dfrac{13}9,\ \dfrac{43}{27}\right)[/tex]

Step-by-step explanation:

We can solve the system of equations by elimination:

(eq 1)   5x + 3y = 12

(eq 2)   2x + 12y = 22

[step 1]   multiply (eq 1) by 4 to get (eq 3):

4(5x + 3y = 12)

20x + 12y = 48    (eq 3)

[step 2]   subtract (eq 3) from (eq 2)

(eq 2)      2x + 12y = 22

(eq 3)  -(20x + 12y = 48)

             -18x + 0   = -26

[step 3]   solve for x in the resulting equation

-18x = -26

x = (-26) / (-18)

[tex]\boxed{x=\dfrac{13}{9}}[/tex]

[step 4]   plug this x-value into (eq 1) to solve for y

5[tex]\left(\frac{13}9\right)[/tex] + 3y = 12

[tex]\frac{65}9[/tex] + 3y = 12

3y = 12 - [tex]\frac{65}9[/tex]

3y = [tex]\frac{43}9[/tex]

[tex]\boxed{y=\dfrac{43}{27}}[/tex]

[step 5]   assemble the x- and y-values into an ordered pair (x, y)

[tex]\left(\dfrac{13}9,\ \dfrac{43}{27}\right)[/tex]

This is the point on the graph where the lines formed by (eq 1) and (eq 2) intersect.