Answer:
23.55 units
Step-by-step explanation:
To find the arc length of the partial circle, we first need to calculate the length of the arc using the formula:
[tex] \Large\boxed{\boxed{ \textsf{Arc Length} = \dfrac{\textsf{angle}}{360^\circ } \times 2 \pi r }}[/tex]
Where:
- [tex] \textsf{angle} = 360^\circ - 90^\circ = 270^\circ [/tex] (as the given angle is complementary to 360°)
- [tex] r = 5 [/tex] (radius of the circle)
Plugging in the values, we have:
[tex] \textsf{Arc Length} = \dfrac{270^\circ }{360^\circ } \times 2 \times 3.14 \times 5 [/tex]
[tex] \textsf{Arc Length} = \dfrac{3}{4} \times 2 \times 3.14 \times 5 [/tex]
[tex] \textsf{Arc Length} = \dfrac{3}{4} \times 10 \times 3.14 [/tex]
[tex] \textsf{Arc Length} = \dfrac{30}{4} \times 3.14 [/tex]
[tex] \textsf{Arc Length} = 7.5 \times 3.14 [/tex]
[tex] \textsf{Arc Length} = 23.55 \textsf{ units }[/tex]
So, the arc length of the partial circle is approximately 23.55 units.