Respuesta :

Circle b:

Diameter = x

Radius = [tex] \frac{x}{2} [/tex]

Area = [tex] \pi r^{2} = \pi ( \frac{x}{2} )^{2} = \frac{ \pi x^{2} }{4} [/tex]

Circle a:

Diameter = [tex] \frac{x}{2} [/tex]

Radius = [tex] \frac{x}{2} * \frac{1}{2} = \frac{x}{4} [/tex]

Area = [tex] \pi r^{2} = \pi ( \frac{x}{4} )^{2} = \frac{ \pi x^{2} }{16} [/tex]

Thus,

Area of circle b to area of circle a

= [tex]\frac{ \pi x^{2} }{4} [/tex] ÷ [tex]\frac{ \pi x^{2} }{16} [/tex]

= [tex]\frac{ \pi x^{2} }{4} [/tex] × [tex]\frac{ 16 }{\pi x^{2}} [/tex]

= 4

Hence, the area of circle b is 4 times the area of circle a.