Respuesta :
Answer:
[tex](x,y)=(-2,3)[/tex]
Step-by-step explanation:
[tex]\text{We have,}\\[/tex]
[tex]y=-3x-3.......(1)\\\\y=7x+17.....(2)[/tex]
[tex]\text{Substituting value of }y\text{ from equation(1) to equation(2),}[/tex]
[tex]-3x-3=7x+17\\\text{or, }-3x-7x=3+17\\\text{or, }-10x=20\\\text{or, }x=-2[/tex]
[tex]\text{Putting }x=-2\text{ in equation(1),}\\y=-3(-2)-3=6-3=3[/tex]
[tex]\therefore\ (x,y)=(-2,3)[/tex]

Answer:
(-2,3)
Step-by-step explanation:
To solve the system of equations by substitution, we'll set the expressions for [tex] y [/tex] equal to each other:
Given:
[tex]\begin{cases} y = -3x - 3 \\y = 7x + 17 \end{cases}[/tex]
We equate the expressions for [tex] y [/tex]:
[tex] -3x - 3 = 7x + 17 [/tex]
Now, we solve for [tex] x [/tex]:
[tex] -3x - 3 - 7x = 17 [/tex]
[tex] -10x - 3 = 17 [/tex]
[tex] -10x = 20 [/tex]
[tex] x = \dfrac{20}{-10}[/tex]
[tex] x = -2 [/tex]
Now that we have found [tex] x = -2 [/tex], we can substitute it back into one of the equations to find [tex] y [/tex].
Let's use the first equation:
[tex] y = -3(-2) - 3 [/tex]
[tex] y = 6 - 3 [/tex]
[tex] y = 3 [/tex]
So, the solution to the system of equations is [tex] (-2, 3) [/tex].