Could someone help me with this and how to find the EXACT value and show work please, thank you

Answer:
-0.258819045.......
Step-by-step explanation:
We can use a scientific calculator
For sin 345°, the angle 345° lies between 270° and 360° (Fourth Quadrant).
Since sine function is negative in the fourth quadrant, thus sin 345° value = -0.258819045. . . using a calculator
I hope that is the answer required. If not feel free to ask more questions on this via comments
Notes
Since the sine function is a periodic function, we can represent sin 345° as, sin 345 degrees = sin(345° + n · 360°), n = 1, 2, 3..
⇒ sin 345° = sin 705° = sin 1065°, and so on.
Answer:
[tex]\frac{1}{4}[/tex] ( [tex]\sqrt{2}[/tex] - [tex]\sqrt{6}[/tex] )
Step-by-step explanation:
using the trigonometric identity
• sin(a - b) = sinacosb - cosasinb
and the exact values
• sin45° = cos45° = [tex]\frac{\sqrt{2} }{2}[/tex]
• cos30° = [tex]\frac{\sqrt{3} }{2}[/tex]
• sin30° = [tex]\frac{1}{2}[/tex]
given
sin345°
345° is in the 4th quadrant , where sin < 0
= - sin(360 - 345)°
= - sin15°
= - sin(45 - 30)°
= - (sin45°cos30° - cos45°sin30° )
= - ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{\sqrt{3} }{2}[/tex] - ( [tex]\frac{\sqrt{2} }{2}[/tex] × [tex]\frac{1}{2}[/tex] )
= - ([tex]\frac{\sqrt{6} }{4}[/tex] - [tex]\frac{\sqrt{2} }{4}[/tex] )
= - [tex]\frac{1}{4}[/tex] ( [tex]\sqrt{6}[/tex] - [tex]\sqrt{2}[/tex] )
= [tex]\frac{1}{4}[/tex] ([tex]\sqrt{2}[/tex] - [tex]\sqrt{6}[/tex] )