Could someone help me solve this proof question and show work explaining, thank you

Answer:
See the work below.
Step-by-step explanation:
We can proof this trigonometry equation using the trigonometry identities as follows:
[tex]\boxed{\displaystyle sec\ A=\frac{1}{cos\ A} }[/tex]
[tex]\boxed{\displaystyle tan\ A=\frac{sin\ A}{cos\ A} }[/tex]
[tex]\displaystyle \frac{1}{sec\ A-tan\ A} =\frac{1}{\frac{1}{cos\ A} -\frac{sin\ A}{cos\ A} }[/tex]
[tex]\displaystyle=\frac{1}{\frac{1-sin\ A}{cos\ A}}[/tex]
[tex]\displaystyle=\frac{cos\ A}{1-sin\ A} \times\frac{1+sin\ A}{1+sin\ A}[/tex]
[tex]\displaystyle=\frac{cos\ A(1+sin\ A)}{1-sin^2A}[/tex]
[tex]\displaystyle=\frac{cos\ A(1+sin\ A)}{cos^2A}[/tex]
[tex]\displaystyle=\frac{1+sin\ A}{cos\ A}[/tex]
[tex]\displaystyle=\frac{1}{cos\ A}+\frac{sin\ A}{cos\ A}[/tex]
[tex]=sec\ A+tan\ A[/tex]
Answer:
Proof below
Step-by-step explanation:
We are asked to prove
[tex]\dfrac{1}{\sec A - \tan A} = \sec A + \tan A[/tex]
Proved